Soto icon

Soto

SageMaker

Service object for interacting with AWS SageMaker service.

public struct SageMaker: AWSService

Provides APIs for creating and managing Amazon SageMaker resources.

Other Resources:

Inheritance

AWSService

Initializers

init(client:region:partition:endpoint:timeout:byteBufferAllocator:options:)

Initialize the SageMaker client

public init(client: AWSClient, region: SotoCore.Region? = nil, partition: AWSPartition = .aws, endpoint: String? = nil, timeout: TimeAmount? = nil, byteBufferAllocator: ByteBufferAllocator = ByteBufferAllocator(), options: AWSServiceConfig.Options = [])

Parameters

  • client: AWSClient used to process requests
  • region: Region of server you want to communicate with. This will override the partition parameter.
  • partition: AWS partition where service resides, standard (.aws), china (.awscn), government (.awsusgov).
  • endpoint: Custom endpoint URL to use instead of standard AWS servers
  • timeout: Timeout value for HTTP requests

init(from:patch:)

Initializer required by AWSService.with(middlewares:​timeout:​byteBufferAllocator:​options). You are not able to use this initializer directly as there are no public initializers for AWSServiceConfig.Patch. Please use AWSService.with(middlewares:​timeout:​byteBufferAllocator:​options) instead.

public init(from: SageMaker, patch: AWSServiceConfig.Patch)

Properties

client

Client used for communication with AWS

let client: AWSClient

config

Service configuration

let config: AWSServiceConfig

Methods

addAssociation(_:logger:on:)

public func addAssociation(_ input: AddAssociationRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<AddAssociationResponse>

Creates an association between the source and the destination. A source can be associated with multiple destinations, and a destination can be associated with multiple sources. An association is a lineage tracking entity. For more information, see Amazon SageMaker ML Lineage Tracking.

addTags(_:logger:on:)

public func addTags(_ input: AddTagsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<AddTagsOutput>

Adds or overwrites one or more tags for the specified Amazon SageMaker resource. You can add tags to notebook instances, training jobs, hyperparameter tuning jobs, batch transform jobs, models, labeling jobs, work teams, endpoint configurations, and endpoints.

Each tag consists of a key and an optional value. Tag keys must be unique per resource. For more information about tags, see For more information, see AWS Tagging Strategies.

Tags that you add to a hyperparameter tuning job by calling this API are also added to any training jobs that the hyperparameter tuning job launches after you call this API, but not to training jobs that the hyperparameter tuning job launched before you called this API. To make sure that the tags associated with a hyperparameter tuning job are also added to all training jobs that the hyperparameter tuning job launches, add the tags when you first create the tuning job by specifying them in the Tags parameter of CreateHyperParameterTuningJob

associateTrialComponent(_:logger:on:)

public func associateTrialComponent(_ input: AssociateTrialComponentRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<AssociateTrialComponentResponse>

Associates a trial component with a trial. A trial component can be associated with multiple trials. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.

createAction(_:logger:on:)

public func createAction(_ input: CreateActionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateActionResponse>

Creates an action. An action is a lineage tracking entity that represents an action or activity. For example, a model deployment or an HPO job. Generally, an action involves at least one input or output artifact. For more information, see Amazon SageMaker ML Lineage Tracking.

createAlgorithm(_:logger:on:)

public func createAlgorithm(_ input: CreateAlgorithmInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateAlgorithmOutput>

Create a machine learning algorithm that you can use in Amazon SageMaker and list in the AWS Marketplace.

createApp(_:logger:on:)

public func createApp(_ input: CreateAppRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateAppResponse>

Creates a running App for the specified UserProfile. Supported Apps are JupyterServer and KernelGateway. This operation is automatically invoked by Amazon SageMaker Studio upon access to the associated Domain, and when new kernel configurations are selected by the user. A user may have multiple Apps active simultaneously.

createAppImageConfig(_:logger:on:)

public func createAppImageConfig(_ input: CreateAppImageConfigRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateAppImageConfigResponse>

Creates a configuration for running a SageMaker image as a KernelGateway app. The configuration specifies the Amazon Elastic File System (EFS) storage volume on the image, and a list of the kernels in the image.

createArtifact(_:logger:on:)

public func createArtifact(_ input: CreateArtifactRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateArtifactResponse>

Creates an artifact. An artifact is a lineage tracking entity that represents a URI addressable object or data. Some examples are the S3 URI of a dataset and the ECR registry path of an image. For more information, see Amazon SageMaker ML Lineage Tracking.

createAutoMLJob(_:logger:on:)

public func createAutoMLJob(_ input: CreateAutoMLJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateAutoMLJobResponse>

Creates an Autopilot job.

Find the best performing model after you run an Autopilot job by calling . Deploy that model by following the steps described in Step 6.1: Deploy the Model to Amazon SageMaker Hosting Services.

For information about how to use Autopilot, see Automate Model Development with Amazon SageMaker Autopilot.

createCodeRepository(_:logger:on:)

public func createCodeRepository(_ input: CreateCodeRepositoryInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateCodeRepositoryOutput>

Creates a Git repository as a resource in your Amazon SageMaker account. You can associate the repository with notebook instances so that you can use Git source control for the notebooks you create. The Git repository is a resource in your Amazon SageMaker account, so it can be associated with more than one notebook instance, and it persists independently from the lifecycle of any notebook instances it is associated with.

The repository can be hosted either in AWS CodeCommit or in any other Git repository.

createCompilationJob(_:logger:on:)

public func createCompilationJob(_ input: CreateCompilationJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateCompilationJobResponse>

Starts a model compilation job. After the model has been compiled, Amazon SageMaker saves the resulting model artifacts to an Amazon Simple Storage Service (Amazon S3) bucket that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts with AWS IoT Greengrass. In that case, deploy them as an ML resource.

In the request body, you provide the following:

  • A name for the compilation job

  • Information about the input model artifacts

  • The output location for the compiled model and the device (target) that the model runs on

  • The Amazon Resource Name (ARN) of the IAM role that Amazon SageMaker assumes to perform the model compilation job.

You can also provide a Tag to track the model compilation job's resource use and costs. The response body contains the CompilationJobArn for the compiled job.

To stop a model compilation job, use StopCompilationJob. To get information about a particular model compilation job, use DescribeCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.

createContext(_:logger:on:)

public func createContext(_ input: CreateContextRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateContextResponse>

Creates a context. A context is a lineage tracking entity that represents a logical grouping of other tracking or experiment entities. Some examples are an endpoint and a model package. For more information, see Amazon SageMaker ML Lineage Tracking.

createDomain(_:logger:on:)

public func createDomain(_ input: CreateDomainRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateDomainResponse>

Creates a Domain used by Amazon SageMaker Studio. A domain consists of an associated Amazon Elastic File System (EFS) volume, a list of authorized users, and a variety of security, application, policy, and Amazon Virtual Private Cloud (VPC) configurations. An AWS account is limited to one domain per region. Users within a domain can share notebook files and other artifacts with each other.

EFS storage

When a domain is created, an EFS volume is created for use by all of the users within the domain. Each user receives a private home directory within the EFS volume for notebooks, Git repositories, and data files.

SageMaker uses the AWS Key Management Service (AWS KMS) to encrypt the EFS volume attached to the domain with an AWS managed customer master key (CMK) by default. For more control, you can specify a customer managed CMK. For more information, see Protect Data at Rest Using Encryption.

VPC configuration

All SageMaker Studio traffic between the domain and the EFS volume is through the specified VPC and subnets. For other Studio traffic, you can specify the AppNetworkAccessType parameter. AppNetworkAccessType corresponds to the network access type that you choose when you onboard to Studio. The following options are available:

  • PublicInternetOnly - Non-EFS traffic goes through a VPC managed by Amazon SageMaker, which allows internet access. This is the default value.

  • VpcOnly - All Studio traffic is through the specified VPC and subnets. Internet access is disabled by default. To allow internet access, you must specify a NAT gateway.

    When internet access is disabled, you won't be able to run a Studio notebook or to train or host models unless your VPC has an interface endpoint to the SageMaker API and runtime or a NAT gateway and your security groups allow outbound connections.

For more information, see Connect SageMaker Studio Notebooks to Resources in a VPC.

createEndpoint(_:logger:on:)

public func createEndpoint(_ input: CreateEndpointInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateEndpointOutput>

Creates an endpoint using the endpoint configuration specified in the request. Amazon SageMaker uses the endpoint to provision resources and deploy models. You create the endpoint configuration with the CreateEndpointConfig API.

Use this API to deploy models using Amazon SageMaker hosting services.

For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)).

You must not delete an EndpointConfig that is in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig.

The endpoint name must be unique within an AWS Region in your AWS account.

When it receives the request, Amazon SageMaker creates the endpoint, launches the resources (ML compute instances), and deploys the model(s) on them.

When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads , the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.

When Amazon SageMaker receives the request, it sets the endpoint status to Creating. After it creates the endpoint, it sets the status to InService. Amazon SageMaker can then process incoming requests for inferences. To check the status of an endpoint, use the DescribeEndpoint API.

If any of the models hosted at this endpoint get model data from an Amazon S3 location, Amazon SageMaker uses AWS Security Token Service to download model artifacts from the S3 path you provided. AWS STS is activated in your IAM user account by default. If you previously deactivated AWS STS for a region, you need to reactivate AWS STS for that region. For more information, see Activating and Deactivating AWS STS in an AWS Region in the AWS Identity and Access Management User Guide.

To add the IAM role policies for using this API operation, go to the IAM console, and choose Roles in the left navigation pane. Search the IAM role that you want to grant access to use the CreateEndpoint and CreateEndpointConfig API operations, add the following policies to the role.

  • Option 1: For a full Amazon SageMaker access, search and attach the AmazonSageMakerFullAccess policy.

  • Option 2: For granting a limited access to an IAM role, paste the following Action elements manually into the JSON file of the IAM role:

    "Action": ["sagemaker:CreateEndpoint", "sagemaker:CreateEndpointConfig"]

    "Resource": [

    "arn:aws:sagemaker:region:account-id:endpoint/endpointName"

    "arn:aws:sagemaker:region:account-id:endpoint-config/endpointConfigName"

    ]

    For more information, see Amazon SageMaker API Permissions: Actions, Permissions, and Resources Reference.

createEndpointConfig(_:logger:on:)

public func createEndpointConfig(_ input: CreateEndpointConfigInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateEndpointConfigOutput>

Creates an endpoint configuration that Amazon SageMaker hosting services uses to deploy models. In the configuration, you identify one or more models, created using the CreateModel API, to deploy and the resources that you want Amazon SageMaker to provision. Then you call the CreateEndpoint API.

Use this API if you want to use Amazon SageMaker hosting services to deploy models into production.

In the request, you define a ProductionVariant, for each model that you want to deploy. Each ProductionVariant parameter also describes the resources that you want Amazon SageMaker to provision. This includes the number and type of ML compute instances to deploy.

If you are hosting multiple models, you also assign a VariantWeight to specify how much traffic you want to allocate to each model. For example, suppose that you want to host two models, A and B, and you assign traffic weight 2 for model A and 1 for model B. Amazon SageMaker distributes two-thirds of the traffic to Model A, and one-third to model B.

For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)).

When you call CreateEndpoint, a load call is made to DynamoDB to verify that your endpoint configuration exists. When you read data from a DynamoDB table supporting Eventually Consistent Reads , the response might not reflect the results of a recently completed write operation. The response might include some stale data. If the dependent entities are not yet in DynamoDB, this causes a validation error. If you repeat your read request after a short time, the response should return the latest data. So retry logic is recommended to handle these possible issues. We also recommend that customers call DescribeEndpointConfig before calling CreateEndpoint to minimize the potential impact of a DynamoDB eventually consistent read.

createExperiment(_:logger:on:)

public func createExperiment(_ input: CreateExperimentRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateExperimentResponse>

Creates an SageMaker experiment. An experiment is a collection of trials that are observed, compared and evaluated as a group. A trial is a set of steps, called trial components, that produce a machine learning model.

The goal of an experiment is to determine the components that produce the best model. Multiple trials are performed, each one isolating and measuring the impact of a change to one or more inputs, while keeping the remaining inputs constant.

When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to experiments, trials, trial components and then use the Search API to search for the tags.

To add a description to an experiment, specify the optional Description parameter. To add a description later, or to change the description, call the UpdateExperiment API.

To get a list of all your experiments, call the ListExperiments API. To view an experiment's properties, call the DescribeExperiment API. To get a list of all the trials associated with an experiment, call the ListTrials API. To create a trial call the CreateTrial API.

createFeatureGroup(_:logger:on:)

public func createFeatureGroup(_ input: CreateFeatureGroupRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateFeatureGroupResponse>

Create a new FeatureGroup. A FeatureGroup is a group of Features defined in the FeatureStore to describe a Record.

The FeatureGroup defines the schema and features contained in the FeatureGroup. A FeatureGroup definition is composed of a list of Features, a RecordIdentifierFeatureName, an EventTimeFeatureName and configurations for its OnlineStore and OfflineStore. Check AWS service quotas to see the FeatureGroups quota for your AWS account.

You must include at least one of OnlineStoreConfig and OfflineStoreConfig to create a FeatureGroup.

createFlowDefinition(_:logger:on:)

public func createFlowDefinition(_ input: CreateFlowDefinitionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateFlowDefinitionResponse>

Creates a flow definition.

createHumanTaskUi(_:logger:on:)

public func createHumanTaskUi(_ input: CreateHumanTaskUiRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateHumanTaskUiResponse>

Defines the settings you will use for the human review workflow user interface. Reviewers will see a three-panel interface with an instruction area, the item to review, and an input area.

createHyperParameterTuningJob(_:logger:on:)

public func createHyperParameterTuningJob(_ input: CreateHyperParameterTuningJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateHyperParameterTuningJobResponse>

Starts a hyperparameter tuning job. A hyperparameter tuning job finds the best version of a model by running many training jobs on your dataset using the algorithm you choose and values for hyperparameters within ranges that you specify. It then chooses the hyperparameter values that result in a model that performs the best, as measured by an objective metric that you choose.

createImage(_:logger:on:)

public func createImage(_ input: CreateImageRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateImageResponse>

Creates a custom SageMaker image. A SageMaker image is a set of image versions. Each image version represents a container image stored in Amazon Container Registry (ECR). For more information, see Bring your own SageMaker image.

createImageVersion(_:logger:on:)

public func createImageVersion(_ input: CreateImageVersionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateImageVersionResponse>

Creates a version of the SageMaker image specified by ImageName. The version represents the Amazon Container Registry (ECR) container image specified by BaseImage.

createLabelingJob(_:logger:on:)

public func createLabelingJob(_ input: CreateLabelingJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateLabelingJobResponse>

Creates a job that uses workers to label the data objects in your input dataset. You can use the labeled data to train machine learning models.

You can select your workforce from one of three providers:

  • A private workforce that you create. It can include employees, contractors, and outside experts. Use a private workforce when want the data to stay within your organization or when a specific set of skills is required.

  • One or more vendors that you select from the AWS Marketplace. Vendors provide expertise in specific areas.

  • The Amazon Mechanical Turk workforce. This is the largest workforce, but it should only be used for public data or data that has been stripped of any personally identifiable information.

You can also use automated data labeling to reduce the number of data objects that need to be labeled by a human. Automated data labeling uses active learning to determine if a data object can be labeled by machine or if it needs to be sent to a human worker. For more information, see Using Automated Data Labeling.

The data objects to be labeled are contained in an Amazon S3 bucket. You create a manifest file that describes the location of each object. For more information, see Using Input and Output Data.

The output can be used as the manifest file for another labeling job or as training data for your machine learning models.

createModel(_:logger:on:)

public func createModel(_ input: CreateModelInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateModelOutput>

Creates a model in Amazon SageMaker. In the request, you name the model and describe a primary container. For the primary container, you specify the Docker image that contains inference code, artifacts (from prior training), and a custom environment map that the inference code uses when you deploy the model for predictions.

Use this API to create a model if you want to use Amazon SageMaker hosting services or run a batch transform job.

To host your model, you create an endpoint configuration with the CreateEndpointConfig API, and then create an endpoint with the CreateEndpoint API. Amazon SageMaker then deploys all of the containers that you defined for the model in the hosting environment.

For an example that calls this method when deploying a model to Amazon SageMaker hosting services, see Deploy the Model to Amazon SageMaker Hosting Services (AWS SDK for Python (Boto 3)).

To run a batch transform using your model, you start a job with the CreateTransformJob API. Amazon SageMaker uses your model and your dataset to get inferences which are then saved to a specified S3 location.

In the CreateModel request, you must define a container with the PrimaryContainer parameter.

In the request, you also provide an IAM role that Amazon SageMaker can assume to access model artifacts and docker image for deployment on ML compute hosting instances or for batch transform jobs. In addition, you also use the IAM role to manage permissions the inference code needs. For example, if the inference code access any other AWS resources, you grant necessary permissions via this role.

createModelPackage(_:logger:on:)

public func createModelPackage(_ input: CreateModelPackageInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateModelPackageOutput>

Creates a model package that you can use to create Amazon SageMaker models or list on AWS Marketplace, or a versioned model that is part of a model group. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.

To create a model package by specifying a Docker container that contains your inference code and the Amazon S3 location of your model artifacts, provide values for InferenceSpecification. To create a model from an algorithm resource that you created or subscribed to in AWS Marketplace, provide a value for SourceAlgorithmSpecification.

There are two types of model packages:

  • Versioned - a model that is part of a model group in the model registry.

  • Unversioned - a model package that is not part of a model group.

createModelPackageGroup(_:logger:on:)

public func createModelPackageGroup(_ input: CreateModelPackageGroupInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateModelPackageGroupOutput>

Creates a model group. A model group contains a group of model versions.

createMonitoringSchedule(_:logger:on:)

public func createMonitoringSchedule(_ input: CreateMonitoringScheduleRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateMonitoringScheduleResponse>

Creates a schedule that regularly starts Amazon SageMaker Processing Jobs to monitor the data captured for an Amazon SageMaker Endoint.

createNotebookInstance(_:logger:on:)

public func createNotebookInstance(_ input: CreateNotebookInstanceInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateNotebookInstanceOutput>

Creates an Amazon SageMaker notebook instance. A notebook instance is a machine learning (ML) compute instance running on a Jupyter notebook.

In a CreateNotebookInstance request, specify the type of ML compute instance that you want to run. Amazon SageMaker launches the instance, installs common libraries that you can use to explore datasets for model training, and attaches an ML storage volume to the notebook instance.

Amazon SageMaker also provides a set of example notebooks. Each notebook demonstrates how to use Amazon SageMaker with a specific algorithm or with a machine learning framework.

After receiving the request, Amazon SageMaker does the following:

  1. Creates a network interface in the Amazon SageMaker VPC.

  2. (Option) If you specified SubnetId, Amazon SageMaker creates a network interface in your own VPC, which is inferred from the subnet ID that you provide in the input. When creating this network interface, Amazon SageMaker attaches the security group that you specified in the request to the network interface that it creates in your VPC.

  3. Launches an EC2 instance of the type specified in the request in the Amazon SageMaker VPC. If you specified SubnetId of your VPC, Amazon SageMaker specifies both network interfaces when launching this instance. This enables inbound traffic from your own VPC to the notebook instance, assuming that the security groups allow it.

After creating the notebook instance, Amazon SageMaker returns its Amazon Resource Name (ARN). You can't change the name of a notebook instance after you create it.

After Amazon SageMaker creates the notebook instance, you can connect to the Jupyter server and work in Jupyter notebooks. For example, you can write code to explore a dataset that you can use for model training, train a model, host models by creating Amazon SageMaker endpoints, and validate hosted models.

For more information, see How It Works.

createNotebookInstanceLifecycleConfig(_:logger:on:)

public func createNotebookInstanceLifecycleConfig(_ input: CreateNotebookInstanceLifecycleConfigInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateNotebookInstanceLifecycleConfigOutput>

Creates a lifecycle configuration that you can associate with a notebook instance. A lifecycle configuration is a collection of shell scripts that run when you create or start a notebook instance.

Each lifecycle configuration script has a limit of 16384 characters.

The value of the $PATH environment variable that is available to both scripts is /sbin:bin:/usr/sbin:/usr/bin.

View CloudWatch Logs for notebook instance lifecycle configurations in log group /aws/sagemaker/NotebookInstances in log stream [notebook-instance-name]/[LifecycleConfigHook].

Lifecycle configuration scripts cannot run for longer than 5 minutes. If a script runs for longer than 5 minutes, it fails and the notebook instance is not created or started.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

createPipeline(_:logger:on:)

public func createPipeline(_ input: CreatePipelineRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreatePipelineResponse>

Creates a pipeline using a JSON pipeline definition.

createPresignedDomainUrl(_:logger:on:)

public func createPresignedDomainUrl(_ input: CreatePresignedDomainUrlRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreatePresignedDomainUrlResponse>

Creates a URL for a specified UserProfile in a Domain. When accessed in a web browser, the user will be automatically signed in to Amazon SageMaker Studio, and granted access to all of the Apps and files associated with the Domain's Amazon Elastic File System (EFS) volume. This operation can only be called when the authentication mode equals IAM.

The URL that you get from a call to CreatePresignedDomainUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.

createPresignedNotebookInstanceUrl(_:logger:on:)

public func createPresignedNotebookInstanceUrl(_ input: CreatePresignedNotebookInstanceUrlInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreatePresignedNotebookInstanceUrlOutput>

Returns a URL that you can use to connect to the Jupyter server from a notebook instance. In the Amazon SageMaker console, when you choose Open next to a notebook instance, Amazon SageMaker opens a new tab showing the Jupyter server home page from the notebook instance. The console uses this API to get the URL and show the page.

The IAM role or user used to call this API defines the permissions to access the notebook instance. Once the presigned URL is created, no additional permission is required to access this URL. IAM authorization policies for this API are also enforced for every HTTP request and WebSocket frame that attempts to connect to the notebook instance.

You can restrict access to this API and to the URL that it returns to a list of IP addresses that you specify. Use the NotIpAddress condition operator and the aws:SourceIP condition context key to specify the list of IP addresses that you want to have access to the notebook instance. For more information, see Limit Access to a Notebook Instance by IP Address.

The URL that you get from a call to CreatePresignedNotebookInstanceUrl is valid only for 5 minutes. If you try to use the URL after the 5-minute limit expires, you are directed to the AWS console sign-in page.

createProcessingJob(_:logger:on:)

public func createProcessingJob(_ input: CreateProcessingJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateProcessingJobResponse>

Creates a processing job.

createProject(_:logger:on:)

public func createProject(_ input: CreateProjectInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateProjectOutput>

Creates a machine learning (ML) project that can contain one or more templates that set up an ML pipeline from training to deploying an approved model.

createTrainingJob(_:logger:on:)

public func createTrainingJob(_ input: CreateTrainingJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateTrainingJobResponse>

Starts a model training job. After training completes, Amazon SageMaker saves the resulting model artifacts to an Amazon S3 location that you specify.

If you choose to host your model using Amazon SageMaker hosting services, you can use the resulting model artifacts as part of the model. You can also use the artifacts in a machine learning service other than Amazon SageMaker, provided that you know how to use them for inference.

In the request body, you provide the following:

  • AlgorithmSpecification - Identifies the training algorithm to use.

  • HyperParameters - Specify these algorithm-specific parameters to enable the estimation of model parameters during training. Hyperparameters can be tuned to optimize this learning process. For a list of hyperparameters for each training algorithm provided by Amazon SageMaker, see Algorithms.

  • InputDataConfig - Describes the training dataset and the Amazon S3, EFS, or FSx location where it is stored.

  • OutputDataConfig - Identifies the Amazon S3 bucket where you want Amazon SageMaker to save the results of model training.

  • ResourceConfig - Identifies the resources, ML compute instances, and ML storage volumes to deploy for model training. In distributed training, you specify more than one instance.

  • EnableManagedSpotTraining - Optimize the cost of training machine learning models by up to 80% by using Amazon EC2 Spot instances. For more information, see Managed Spot Training.

  • RoleArn - The Amazon Resource Number (ARN) that Amazon SageMaker assumes to perform tasks on your behalf during model training. You must grant this role the necessary permissions so that Amazon SageMaker can successfully complete model training.

  • StoppingCondition - To help cap training costs, use MaxRuntimeInSeconds to set a time limit for training. Use MaxWaitTimeInSeconds to specify how long you are willing to wait for a managed spot training job to complete.

For more information about Amazon SageMaker, see How It Works.

createTransformJob(_:logger:on:)

public func createTransformJob(_ input: CreateTransformJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateTransformJobResponse>

Starts a transform job. A transform job uses a trained model to get inferences on a dataset and saves these results to an Amazon S3 location that you specify.

To perform batch transformations, you create a transform job and use the data that you have readily available.

In the request body, you provide the following:

  • TransformJobName - Identifies the transform job. The name must be unique within an AWS Region in an AWS account.

  • ModelName - Identifies the model to use. ModelName must be the name of an existing Amazon SageMaker model in the same AWS Region and AWS account. For information on creating a model, see CreateModel.

  • TransformInput - Describes the dataset to be transformed and the Amazon S3 location where it is stored.

  • TransformOutput - Identifies the Amazon S3 location where you want Amazon SageMaker to save the results from the transform job.

  • TransformResources - Identifies the ML compute instances for the transform job.

For more information about how batch transformation works, see Batch Transform.

createTrial(_:logger:on:)

public func createTrial(_ input: CreateTrialRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateTrialResponse>

Creates an Amazon SageMaker trial. A trial is a set of steps called trial components that produce a machine learning model. A trial is part of a single Amazon SageMaker experiment.

When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to a trial and then use the Search API to search for the tags.

To get a list of all your trials, call the ListTrials API. To view a trial's properties, call the DescribeTrial API. To create a trial component, call the CreateTrialComponent API.

createTrialComponent(_:logger:on:)

public func createTrialComponent(_ input: CreateTrialComponentRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateTrialComponentResponse>

Creates a trial component, which is a stage of a machine learning trial. A trial is composed of one or more trial components. A trial component can be used in multiple trials.

Trial components include pre-processing jobs, training jobs, and batch transform jobs.

When you use Amazon SageMaker Studio or the Amazon SageMaker Python SDK, all experiments, trials, and trial components are automatically tracked, logged, and indexed. When you use the AWS SDK for Python (Boto), you must use the logging APIs provided by the SDK.

You can add tags to a trial component and then use the Search API to search for the tags.

CreateTrialComponent can only be invoked from within an Amazon SageMaker managed environment. This includes Amazon SageMaker training jobs, processing jobs, transform jobs, and Amazon SageMaker notebooks. A call to CreateTrialComponent from outside one of these environments results in an error.

createUserProfile(_:logger:on:)

public func createUserProfile(_ input: CreateUserProfileRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateUserProfileResponse>

Creates a user profile. A user profile represents a single user within a domain, and is the main way to reference a "person" for the purposes of sharing, reporting, and other user-oriented features. This entity is created when a user onboards to Amazon SageMaker Studio. If an administrator invites a person by email or imports them from SSO, a user profile is automatically created. A user profile is the primary holder of settings for an individual user and has a reference to the user's private Amazon Elastic File System (EFS) home directory.

createWorkforce(_:logger:on:)

public func createWorkforce(_ input: CreateWorkforceRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateWorkforceResponse>

Use this operation to create a workforce. This operation will return an error if a workforce already exists in the AWS Region that you specify. You can only create one workforce in each AWS Region per AWS account.

If you want to create a new workforce in an AWS Region where a workforce already exists, use the API operation to delete the existing workforce and then use CreateWorkforce to create a new workforce.

To create a private workforce using Amazon Cognito, you must specify a Cognito user pool in CognitoConfig. You can also create an Amazon Cognito workforce using the Amazon SageMaker console. For more information, see Create a Private Workforce (Amazon Cognito).

To create a private workforce using your own OIDC Identity Provider (IdP), specify your IdP configuration in OidcConfig. Your OIDC IdP must support groups because groups are used by Ground Truth and Amazon A2I to create work teams. For more information, see Create a Private Workforce (OIDC IdP).

createWorkteam(_:logger:on:)

public func createWorkteam(_ input: CreateWorkteamRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<CreateWorkteamResponse>

Creates a new work team for labeling your data. A work team is defined by one or more Amazon Cognito user pools. You must first create the user pools before you can create a work team.

You cannot create more than 25 work teams in an account and region.

deleteAction(_:logger:on:)

public func deleteAction(_ input: DeleteActionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteActionResponse>

Deletes an action.

deleteAlgorithm(_:logger:on:)

@discardableResult public func deleteAlgorithm(_ input: DeleteAlgorithmInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Removes the specified algorithm from your account.

deleteApp(_:logger:on:)

@discardableResult public func deleteApp(_ input: DeleteAppRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Used to stop and delete an app.

deleteAppImageConfig(_:logger:on:)

@discardableResult public func deleteAppImageConfig(_ input: DeleteAppImageConfigRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Deletes an AppImageConfig.

deleteArtifact(_:logger:on:)

public func deleteArtifact(_ input: DeleteArtifactRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteArtifactResponse>

Deletes an artifact. Either ArtifactArn or Source must be specified.

deleteAssociation(_:logger:on:)

public func deleteAssociation(_ input: DeleteAssociationRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteAssociationResponse>

Deletes an association.

deleteCodeRepository(_:logger:on:)

@discardableResult public func deleteCodeRepository(_ input: DeleteCodeRepositoryInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Deletes the specified Git repository from your account.

deleteContext(_:logger:on:)

public func deleteContext(_ input: DeleteContextRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteContextResponse>

Deletes an context.

deleteDomain(_:logger:on:)

@discardableResult public func deleteDomain(_ input: DeleteDomainRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Used to delete a domain. If you onboarded with IAM mode, you will need to delete your domain to onboard again using SSO. Use with caution. All of the members of the domain will lose access to their EFS volume, including data, notebooks, and other artifacts.

deleteEndpoint(_:logger:on:)

@discardableResult public func deleteEndpoint(_ input: DeleteEndpointInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Deletes an endpoint. Amazon SageMaker frees up all of the resources that were deployed when the endpoint was created.

Amazon SageMaker retires any custom KMS key grants associated with the endpoint, meaning you don't need to use the RevokeGrant API call.

deleteEndpointConfig(_:logger:on:)

@discardableResult public func deleteEndpointConfig(_ input: DeleteEndpointConfigInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Deletes an endpoint configuration. The DeleteEndpointConfig API deletes only the specified configuration. It does not delete endpoints created using the configuration.

You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.

deleteExperiment(_:logger:on:)

public func deleteExperiment(_ input: DeleteExperimentRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteExperimentResponse>

Deletes an Amazon SageMaker experiment. All trials associated with the experiment must be deleted first. Use the ListTrials API to get a list of the trials associated with the experiment.

deleteFeatureGroup(_:logger:on:)

@discardableResult public func deleteFeatureGroup(_ input: DeleteFeatureGroupRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Delete the FeatureGroup and any data that was written to the OnlineStore of the FeatureGroup. Data cannot be accessed from the OnlineStore immediately after DeleteFeatureGroup is called.

Data written into the OfflineStore will not be deleted. The AWS Glue database and tables that are automatically created for your OfflineStore are not deleted.

deleteFlowDefinition(_:logger:on:)

public func deleteFlowDefinition(_ input: DeleteFlowDefinitionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteFlowDefinitionResponse>

Deletes the specified flow definition.

deleteHumanTaskUi(_:logger:on:)

public func deleteHumanTaskUi(_ input: DeleteHumanTaskUiRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteHumanTaskUiResponse>

Use this operation to delete a human task user interface (worker task template).

To see a list of human task user interfaces (work task templates) in your account, use . When you delete a worker task template, it no longer appears when you call ListHumanTaskUis.

deleteImage(_:logger:on:)

public func deleteImage(_ input: DeleteImageRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteImageResponse>

Deletes a SageMaker image and all versions of the image. The container images aren't deleted.

deleteImageVersion(_:logger:on:)

public func deleteImageVersion(_ input: DeleteImageVersionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteImageVersionResponse>

Deletes a version of a SageMaker image. The container image the version represents isn't deleted.

deleteModel(_:logger:on:)

@discardableResult public func deleteModel(_ input: DeleteModelInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Deletes a model. The DeleteModel API deletes only the model entry that was created in Amazon SageMaker when you called the CreateModel API. It does not delete model artifacts, inference code, or the IAM role that you specified when creating the model.

deleteModelPackage(_:logger:on:)

@discardableResult public func deleteModelPackage(_ input: DeleteModelPackageInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Deletes a model package.

A model package is used to create Amazon SageMaker models or list on AWS Marketplace. Buyers can subscribe to model packages listed on AWS Marketplace to create models in Amazon SageMaker.

deleteModelPackageGroup(_:logger:on:)

@discardableResult public func deleteModelPackageGroup(_ input: DeleteModelPackageGroupInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Deletes the specified model group.

deleteModelPackageGroupPolicy(_:logger:on:)

@discardableResult public func deleteModelPackageGroupPolicy(_ input: DeleteModelPackageGroupPolicyInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Deletes a model group resource policy.

deleteMonitoringSchedule(_:logger:on:)

@discardableResult public func deleteMonitoringSchedule(_ input: DeleteMonitoringScheduleRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Deletes a monitoring schedule. Also stops the schedule had not already been stopped. This does not delete the job execution history of the monitoring schedule.

deleteNotebookInstance(_:logger:on:)

@discardableResult public func deleteNotebookInstance(_ input: DeleteNotebookInstanceInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Deletes an Amazon SageMaker notebook instance. Before you can delete a notebook instance, you must call the StopNotebookInstance API.

When you delete a notebook instance, you lose all of your data. Amazon SageMaker removes the ML compute instance, and deletes the ML storage volume and the network interface associated with the notebook instance.

deleteNotebookInstanceLifecycleConfig(_:logger:on:)

@discardableResult public func deleteNotebookInstanceLifecycleConfig(_ input: DeleteNotebookInstanceLifecycleConfigInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Deletes a notebook instance lifecycle configuration.

deletePipeline(_:logger:on:)

public func deletePipeline(_ input: DeletePipelineRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeletePipelineResponse>

Deletes a pipeline.

deleteProject(_:logger:on:)

@discardableResult public func deleteProject(_ input: DeleteProjectInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Delete the specified project.

deleteTags(_:logger:on:)

public func deleteTags(_ input: DeleteTagsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteTagsOutput>

Deletes the specified tags from an Amazon SageMaker resource.

To list a resource's tags, use the ListTags API.

When you call this API to delete tags from a hyperparameter tuning job, the deleted tags are not removed from training jobs that the hyperparameter tuning job launched before you called this API.

deleteTrial(_:logger:on:)

public func deleteTrial(_ input: DeleteTrialRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteTrialResponse>

Deletes the specified trial. All trial components that make up the trial must be deleted first. Use the DescribeTrialComponent API to get the list of trial components.

deleteTrialComponent(_:logger:on:)

public func deleteTrialComponent(_ input: DeleteTrialComponentRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteTrialComponentResponse>

Deletes the specified trial component. A trial component must be disassociated from all trials before the trial component can be deleted. To disassociate a trial component from a trial, call the DisassociateTrialComponent API.

deleteUserProfile(_:logger:on:)

@discardableResult public func deleteUserProfile(_ input: DeleteUserProfileRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Deletes a user profile. When a user profile is deleted, the user loses access to their EFS volume, including data, notebooks, and other artifacts.

deleteWorkforce(_:logger:on:)

public func deleteWorkforce(_ input: DeleteWorkforceRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteWorkforceResponse>

Use this operation to delete a workforce.

If you want to create a new workforce in an AWS Region where a workforce already exists, use this operation to delete the existing workforce and then use to create a new workforce.

If a private workforce contains one or more work teams, you must use the operation to delete all work teams before you delete the workforce. If you try to delete a workforce that contains one or more work teams, you will recieve a ResourceInUse error.

deleteWorkteam(_:logger:on:)

public func deleteWorkteam(_ input: DeleteWorkteamRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DeleteWorkteamResponse>

Deletes an existing work team. This operation can't be undone.

describeAction(_:logger:on:)

public func describeAction(_ input: DescribeActionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeActionResponse>

Describes an action.

describeAlgorithm(_:logger:on:)

public func describeAlgorithm(_ input: DescribeAlgorithmInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeAlgorithmOutput>

Returns a description of the specified algorithm that is in your account.

describeApp(_:logger:on:)

public func describeApp(_ input: DescribeAppRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeAppResponse>

Describes the app.

describeAppImageConfig(_:logger:on:)

public func describeAppImageConfig(_ input: DescribeAppImageConfigRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeAppImageConfigResponse>

Describes an AppImageConfig.

describeArtifact(_:logger:on:)

public func describeArtifact(_ input: DescribeArtifactRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeArtifactResponse>

Describes an artifact.

describeAutoMLJob(_:logger:on:)

public func describeAutoMLJob(_ input: DescribeAutoMLJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeAutoMLJobResponse>

Returns information about an Amazon SageMaker job.

describeCodeRepository(_:logger:on:)

public func describeCodeRepository(_ input: DescribeCodeRepositoryInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeCodeRepositoryOutput>

Gets details about the specified Git repository.

describeCompilationJob(_:logger:on:)

public func describeCompilationJob(_ input: DescribeCompilationJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeCompilationJobResponse>

Returns information about a model compilation job.

To create a model compilation job, use CreateCompilationJob. To get information about multiple model compilation jobs, use ListCompilationJobs.

describeContext(_:logger:on:)

public func describeContext(_ input: DescribeContextRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeContextResponse>

Describes a context.

describeDomain(_:logger:on:)

public func describeDomain(_ input: DescribeDomainRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeDomainResponse>

The description of the domain.

describeEndpoint(_:logger:on:)

public func describeEndpoint(_ input: DescribeEndpointInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeEndpointOutput>

Returns the description of an endpoint.

describeEndpointConfig(_:logger:on:)

public func describeEndpointConfig(_ input: DescribeEndpointConfigInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeEndpointConfigOutput>

Returns the description of an endpoint configuration created using the CreateEndpointConfig API.

describeExperiment(_:logger:on:)

public func describeExperiment(_ input: DescribeExperimentRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeExperimentResponse>

Provides a list of an experiment's properties.

describeFeatureGroup(_:logger:on:)

public func describeFeatureGroup(_ input: DescribeFeatureGroupRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeFeatureGroupResponse>

Use this operation to describe a FeatureGroup. The response includes information on the creation time, FeatureGroup name, the unique identifier for each FeatureGroup, and more.

describeFlowDefinition(_:logger:on:)

public func describeFlowDefinition(_ input: DescribeFlowDefinitionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeFlowDefinitionResponse>

Returns information about the specified flow definition.

describeHumanTaskUi(_:logger:on:)

public func describeHumanTaskUi(_ input: DescribeHumanTaskUiRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeHumanTaskUiResponse>

Returns information about the requested human task user interface (worker task template).

describeHyperParameterTuningJob(_:logger:on:)

public func describeHyperParameterTuningJob(_ input: DescribeHyperParameterTuningJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeHyperParameterTuningJobResponse>

Gets a description of a hyperparameter tuning job.

describeImage(_:logger:on:)

public func describeImage(_ input: DescribeImageRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeImageResponse>

Describes a SageMaker image.

describeImageVersion(_:logger:on:)

public func describeImageVersion(_ input: DescribeImageVersionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeImageVersionResponse>

Describes a version of a SageMaker image.

describeLabelingJob(_:logger:on:)

public func describeLabelingJob(_ input: DescribeLabelingJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeLabelingJobResponse>

Gets information about a labeling job.

describeModel(_:logger:on:)

public func describeModel(_ input: DescribeModelInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeModelOutput>

Describes a model that you created using the CreateModel API.

describeModelPackage(_:logger:on:)

public func describeModelPackage(_ input: DescribeModelPackageInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeModelPackageOutput>

Returns a description of the specified model package, which is used to create Amazon SageMaker models or list them on AWS Marketplace.

To create models in Amazon SageMaker, buyers can subscribe to model packages listed on AWS Marketplace.

describeModelPackageGroup(_:logger:on:)

public func describeModelPackageGroup(_ input: DescribeModelPackageGroupInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeModelPackageGroupOutput>

Gets a description for the specified model group.

describeMonitoringSchedule(_:logger:on:)

public func describeMonitoringSchedule(_ input: DescribeMonitoringScheduleRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeMonitoringScheduleResponse>

Describes the schedule for a monitoring job.

describeNotebookInstance(_:logger:on:)

public func describeNotebookInstance(_ input: DescribeNotebookInstanceInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeNotebookInstanceOutput>

Returns information about a notebook instance.

describeNotebookInstanceLifecycleConfig(_:logger:on:)

public func describeNotebookInstanceLifecycleConfig(_ input: DescribeNotebookInstanceLifecycleConfigInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeNotebookInstanceLifecycleConfigOutput>

Returns a description of a notebook instance lifecycle configuration.

For information about notebook instance lifestyle configurations, see Step 2.1: (Optional) Customize a Notebook Instance.

describePipeline(_:logger:on:)

public func describePipeline(_ input: DescribePipelineRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribePipelineResponse>

Describes the details of a pipeline.

describePipelineDefinitionForExecution(_:logger:on:)

public func describePipelineDefinitionForExecution(_ input: DescribePipelineDefinitionForExecutionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribePipelineDefinitionForExecutionResponse>

Describes the details of an execution's pipeline definition.

describePipelineExecution(_:logger:on:)

public func describePipelineExecution(_ input: DescribePipelineExecutionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribePipelineExecutionResponse>

Describes the details of a pipeline execution.

describeProcessingJob(_:logger:on:)

public func describeProcessingJob(_ input: DescribeProcessingJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeProcessingJobResponse>

Returns a description of a processing job.

describeProject(_:logger:on:)

public func describeProject(_ input: DescribeProjectInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeProjectOutput>

Describes the details of a project.

describeSubscribedWorkteam(_:logger:on:)

public func describeSubscribedWorkteam(_ input: DescribeSubscribedWorkteamRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeSubscribedWorkteamResponse>

Gets information about a work team provided by a vendor. It returns details about the subscription with a vendor in the AWS Marketplace.

describeTrainingJob(_:logger:on:)

public func describeTrainingJob(_ input: DescribeTrainingJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeTrainingJobResponse>

Returns information about a training job.

describeTransformJob(_:logger:on:)

public func describeTransformJob(_ input: DescribeTransformJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeTransformJobResponse>

Returns information about a transform job.

describeTrial(_:logger:on:)

public func describeTrial(_ input: DescribeTrialRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeTrialResponse>

Provides a list of a trial's properties.

describeTrialComponent(_:logger:on:)

public func describeTrialComponent(_ input: DescribeTrialComponentRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeTrialComponentResponse>

Provides a list of a trials component's properties.

describeUserProfile(_:logger:on:)

public func describeUserProfile(_ input: DescribeUserProfileRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeUserProfileResponse>

Describes a user profile. For more information, see CreateUserProfile.

describeWorkforce(_:logger:on:)

public func describeWorkforce(_ input: DescribeWorkforceRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeWorkforceResponse>

Lists private workforce information, including workforce name, Amazon Resource Name (ARN), and, if applicable, allowed IP address ranges (CIDRs). Allowable IP address ranges are the IP addresses that workers can use to access tasks.

This operation applies only to private workforces.

describeWorkteam(_:logger:on:)

public func describeWorkteam(_ input: DescribeWorkteamRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DescribeWorkteamResponse>

Gets information about a specific work team. You can see information such as the create date, the last updated date, membership information, and the work team's Amazon Resource Name (ARN).

disableSagemakerServicecatalogPortfolio(_:logger:on:)

public func disableSagemakerServicecatalogPortfolio(_ input: DisableSagemakerServicecatalogPortfolioInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DisableSagemakerServicecatalogPortfolioOutput>

Disables using Service Catalog in SageMaker. Service Catalog is used to create SageMaker projects.

disassociateTrialComponent(_:logger:on:)

public func disassociateTrialComponent(_ input: DisassociateTrialComponentRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<DisassociateTrialComponentResponse>

Disassociates a trial component from a trial. This doesn't effect other trials the component is associated with. Before you can delete a component, you must disassociate the component from all trials it is associated with. To associate a trial component with a trial, call the AssociateTrialComponent API.

To get a list of the trials a component is associated with, use the Search API. Specify ExperimentTrialComponent for the Resource parameter. The list appears in the response under Results.TrialComponent.Parents.

enableSagemakerServicecatalogPortfolio(_:logger:on:)

public func enableSagemakerServicecatalogPortfolio(_ input: EnableSagemakerServicecatalogPortfolioInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<EnableSagemakerServicecatalogPortfolioOutput>

Enables using Service Catalog in SageMaker. Service Catalog is used to create SageMaker projects.

getModelPackageGroupPolicy(_:logger:on:)

public func getModelPackageGroupPolicy(_ input: GetModelPackageGroupPolicyInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<GetModelPackageGroupPolicyOutput>

Gets a resource policy that manages access for a model group. For information about resource policies, see Identity-based policies and resource-based policies in the AWS Identity and Access Management User Guide..

getSagemakerServicecatalogPortfolioStatus(_:logger:on:)

public func getSagemakerServicecatalogPortfolioStatus(_ input: GetSagemakerServicecatalogPortfolioStatusInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<GetSagemakerServicecatalogPortfolioStatusOutput>

Gets the status of Service Catalog in SageMaker. Service Catalog is used to create SageMaker projects.

getSearchSuggestions(_:logger:on:)

public func getSearchSuggestions(_ input: GetSearchSuggestionsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<GetSearchSuggestionsResponse>

An auto-complete API for the search functionality in the Amazon SageMaker console. It returns suggestions of possible matches for the property name to use in Search queries. Provides suggestions for HyperParameters, Tags, and Metrics.

listActions(_:logger:on:)

public func listActions(_ input: ListActionsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListActionsResponse>

Lists the actions in your account and their properties.

listAlgorithms(_:logger:on:)

public func listAlgorithms(_ input: ListAlgorithmsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListAlgorithmsOutput>

Lists the machine learning algorithms that have been created.

listAppImageConfigs(_:logger:on:)

public func listAppImageConfigs(_ input: ListAppImageConfigsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListAppImageConfigsResponse>

Lists the AppImageConfigs in your account and their properties. The list can be filtered by creation time or modified time, and whether the AppImageConfig name contains a specified string.

listApps(_:logger:on:)

public func listApps(_ input: ListAppsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListAppsResponse>

Lists apps.

listArtifacts(_:logger:on:)

public func listArtifacts(_ input: ListArtifactsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListArtifactsResponse>

Lists the artifacts in your account and their properties.

listAssociations(_:logger:on:)

public func listAssociations(_ input: ListAssociationsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListAssociationsResponse>

Lists the associations in your account and their properties.

listAutoMLJobs(_:logger:on:)

public func listAutoMLJobs(_ input: ListAutoMLJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListAutoMLJobsResponse>

Request a list of jobs.

listCandidatesForAutoMLJob(_:logger:on:)

public func listCandidatesForAutoMLJob(_ input: ListCandidatesForAutoMLJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListCandidatesForAutoMLJobResponse>

List the Candidates created for the job.

listCodeRepositories(_:logger:on:)

public func listCodeRepositories(_ input: ListCodeRepositoriesInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListCodeRepositoriesOutput>

Gets a list of the Git repositories in your account.

listCompilationJobs(_:logger:on:)

public func listCompilationJobs(_ input: ListCompilationJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListCompilationJobsResponse>

Lists model compilation jobs that satisfy various filters.

To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.

listContexts(_:logger:on:)

public func listContexts(_ input: ListContextsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListContextsResponse>

Lists the contexts in your account and their properties.

listDomains(_:logger:on:)

public func listDomains(_ input: ListDomainsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListDomainsResponse>

Lists the domains.

listEndpointConfigs(_:logger:on:)

public func listEndpointConfigs(_ input: ListEndpointConfigsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListEndpointConfigsOutput>

Lists endpoint configurations.

listEndpoints(_:logger:on:)

public func listEndpoints(_ input: ListEndpointsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListEndpointsOutput>

Lists endpoints.

listExperiments(_:logger:on:)

public func listExperiments(_ input: ListExperimentsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListExperimentsResponse>

Lists all the experiments in your account. The list can be filtered to show only experiments that were created in a specific time range. The list can be sorted by experiment name or creation time.

listFeatureGroups(_:logger:on:)

public func listFeatureGroups(_ input: ListFeatureGroupsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListFeatureGroupsResponse>

List FeatureGroups based on given filter and order.

listFlowDefinitions(_:logger:on:)

public func listFlowDefinitions(_ input: ListFlowDefinitionsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListFlowDefinitionsResponse>

Returns information about the flow definitions in your account.

listHumanTaskUis(_:logger:on:)

public func listHumanTaskUis(_ input: ListHumanTaskUisRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListHumanTaskUisResponse>

Returns information about the human task user interfaces in your account.

listHyperParameterTuningJobs(_:logger:on:)

public func listHyperParameterTuningJobs(_ input: ListHyperParameterTuningJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListHyperParameterTuningJobsResponse>

Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.

listImageVersions(_:logger:on:)

public func listImageVersions(_ input: ListImageVersionsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListImageVersionsResponse>

Lists the versions of a specified image and their properties. The list can be filtered by creation time or modified time.

listImages(_:logger:on:)

public func listImages(_ input: ListImagesRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListImagesResponse>

Lists the images in your account and their properties. The list can be filtered by creation time or modified time, and whether the image name contains a specified string.

listLabelingJobs(_:logger:on:)

public func listLabelingJobs(_ input: ListLabelingJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListLabelingJobsResponse>

Gets a list of labeling jobs.

listLabelingJobsForWorkteam(_:logger:on:)

public func listLabelingJobsForWorkteam(_ input: ListLabelingJobsForWorkteamRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListLabelingJobsForWorkteamResponse>

Gets a list of labeling jobs assigned to a specified work team.

listModelPackageGroups(_:logger:on:)

public func listModelPackageGroups(_ input: ListModelPackageGroupsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListModelPackageGroupsOutput>

Gets a list of the model groups in your AWS account.

listModelPackages(_:logger:on:)

public func listModelPackages(_ input: ListModelPackagesInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListModelPackagesOutput>

Lists the model packages that have been created.

listModels(_:logger:on:)

public func listModels(_ input: ListModelsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListModelsOutput>

Lists models created with the CreateModel API.

listMonitoringExecutions(_:logger:on:)

public func listMonitoringExecutions(_ input: ListMonitoringExecutionsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListMonitoringExecutionsResponse>

Returns list of all monitoring job executions.

listMonitoringSchedules(_:logger:on:)

public func listMonitoringSchedules(_ input: ListMonitoringSchedulesRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListMonitoringSchedulesResponse>

Returns list of all monitoring schedules.

listNotebookInstanceLifecycleConfigs(_:logger:on:)

public func listNotebookInstanceLifecycleConfigs(_ input: ListNotebookInstanceLifecycleConfigsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListNotebookInstanceLifecycleConfigsOutput>

Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.

listNotebookInstances(_:logger:on:)

public func listNotebookInstances(_ input: ListNotebookInstancesInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListNotebookInstancesOutput>

Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region.

listPipelineExecutionSteps(_:logger:on:)

public func listPipelineExecutionSteps(_ input: ListPipelineExecutionStepsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListPipelineExecutionStepsResponse>

Gets a list of PipeLineExecutionStep objects.

listPipelineExecutions(_:logger:on:)

public func listPipelineExecutions(_ input: ListPipelineExecutionsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListPipelineExecutionsResponse>

Gets a list of the pipeline executions.

listPipelineParametersForExecution(_:logger:on:)

public func listPipelineParametersForExecution(_ input: ListPipelineParametersForExecutionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListPipelineParametersForExecutionResponse>

Gets a list of parameters for a pipeline execution.

listPipelines(_:logger:on:)

public func listPipelines(_ input: ListPipelinesRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListPipelinesResponse>

Gets a list of pipelines.

listProcessingJobs(_:logger:on:)

public func listProcessingJobs(_ input: ListProcessingJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListProcessingJobsResponse>

Lists processing jobs that satisfy various filters.

listProjects(_:logger:on:)

public func listProjects(_ input: ListProjectsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListProjectsOutput>

Gets a list of the projects in an AWS account.

listSubscribedWorkteams(_:logger:on:)

public func listSubscribedWorkteams(_ input: ListSubscribedWorkteamsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListSubscribedWorkteamsResponse>

Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.

listTags(_:logger:on:)

public func listTags(_ input: ListTagsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListTagsOutput>

Returns the tags for the specified Amazon SageMaker resource.

listTrainingJobs(_:logger:on:)

public func listTrainingJobs(_ input: ListTrainingJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListTrainingJobsResponse>

Lists training jobs.

listTrainingJobsForHyperParameterTuningJob(_:logger:on:)

public func listTrainingJobsForHyperParameterTuningJob(_ input: ListTrainingJobsForHyperParameterTuningJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListTrainingJobsForHyperParameterTuningJobResponse>

Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.

listTransformJobs(_:logger:on:)

public func listTransformJobs(_ input: ListTransformJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListTransformJobsResponse>

Lists transform jobs.

listTrialComponents(_:logger:on:)

public func listTrialComponents(_ input: ListTrialComponentsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListTrialComponentsResponse>

Lists the trial components in your account. You can sort the list by trial component name or creation time. You can filter the list to show only components that were created in a specific time range. You can also filter on one of the following:

  • ExperimentName

  • SourceArn

  • TrialName

listTrials(_:logger:on:)

public func listTrials(_ input: ListTrialsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListTrialsResponse>

Lists the trials in your account. Specify an experiment name to limit the list to the trials that are part of that experiment. Specify a trial component name to limit the list to the trials that associated with that trial component. The list can be filtered to show only trials that were created in a specific time range. The list can be sorted by trial name or creation time.

listUserProfiles(_:logger:on:)

public func listUserProfiles(_ input: ListUserProfilesRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListUserProfilesResponse>

Lists user profiles.

listWorkforces(_:logger:on:)

public func listWorkforces(_ input: ListWorkforcesRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListWorkforcesResponse>

Use this operation to list all private and vendor workforces in an AWS Region. Note that you can only have one private workforce per AWS Region.

listWorkteams(_:logger:on:)

public func listWorkteams(_ input: ListWorkteamsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<ListWorkteamsResponse>

Gets a list of private work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.

putModelPackageGroupPolicy(_:logger:on:)

public func putModelPackageGroupPolicy(_ input: PutModelPackageGroupPolicyInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<PutModelPackageGroupPolicyOutput>

Adds a resouce policy to control access to a model group. For information about resoure policies, see Identity-based policies and resource-based policies in the AWS Identity and Access Management User Guide..

renderUiTemplate(_:logger:on:)

public func renderUiTemplate(_ input: RenderUiTemplateRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<RenderUiTemplateResponse>

Renders the UI template so that you can preview the worker's experience.

search(_:logger:on:)

public func search(_ input: SearchRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<SearchResponse>

Finds Amazon SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord objects in the response. You can sort the search results by any resource property in a ascending or descending order.

You can query against the following value types: numeric, text, Boolean, and timestamp.

startMonitoringSchedule(_:logger:on:)

@discardableResult public func startMonitoringSchedule(_ input: StartMonitoringScheduleRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Starts a previously stopped monitoring schedule.

New monitoring schedules are immediately started after creation.

startNotebookInstance(_:logger:on:)

@discardableResult public func startNotebookInstance(_ input: StartNotebookInstanceInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Launches an ML compute instance with the latest version of the libraries and attaches your ML storage volume. After configuring the notebook instance, Amazon SageMaker sets the notebook instance status to InService. A notebook instance's status must be InService before you can connect to your Jupyter notebook.

startPipelineExecution(_:logger:on:)

public func startPipelineExecution(_ input: StartPipelineExecutionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<StartPipelineExecutionResponse>

Starts a pipeline execution.

stopAutoMLJob(_:logger:on:)

@discardableResult public func stopAutoMLJob(_ input: StopAutoMLJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

A method for forcing the termination of a running job.

stopCompilationJob(_:logger:on:)

@discardableResult public func stopCompilationJob(_ input: StopCompilationJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Stops a model compilation job.

To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal. This gracefully shuts the job down. If the job hasn't stopped, it sends the SIGKILL signal.

When it receives a StopCompilationJob request, Amazon SageMaker changes the CompilationJobSummary$CompilationJobStatus of the job to Stopping. After Amazon SageMaker stops the job, it sets the CompilationJobSummary$CompilationJobStatus to Stopped.

stopHyperParameterTuningJob(_:logger:on:)

@discardableResult public func stopHyperParameterTuningJob(_ input: StopHyperParameterTuningJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Stops a running hyperparameter tuning job and all running training jobs that the tuning job launched.

All model artifacts output from the training jobs are stored in Amazon Simple Storage Service (Amazon S3). All data that the training jobs write to Amazon CloudWatch Logs are still available in CloudWatch. After the tuning job moves to the Stopped state, it releases all reserved resources for the tuning job.

stopLabelingJob(_:logger:on:)

@discardableResult public func stopLabelingJob(_ input: StopLabelingJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Stops a running labeling job. A job that is stopped cannot be restarted. Any results obtained before the job is stopped are placed in the Amazon S3 output bucket.

stopMonitoringSchedule(_:logger:on:)

@discardableResult public func stopMonitoringSchedule(_ input: StopMonitoringScheduleRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Stops a previously started monitoring schedule.

stopNotebookInstance(_:logger:on:)

@discardableResult public func stopNotebookInstance(_ input: StopNotebookInstanceInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Terminates the ML compute instance. Before terminating the instance, Amazon SageMaker disconnects the ML storage volume from it. Amazon SageMaker preserves the ML storage volume. Amazon SageMaker stops charging you for the ML compute instance when you call StopNotebookInstance.

To access data on the ML storage volume for a notebook instance that has been terminated, call the StartNotebookInstance API. StartNotebookInstance launches another ML compute instance, configures it, and attaches the preserved ML storage volume so you can continue your work.

stopPipelineExecution(_:logger:on:)

public func stopPipelineExecution(_ input: StopPipelineExecutionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<StopPipelineExecutionResponse>

Stops a pipeline execution.

stopProcessingJob(_:logger:on:)

@discardableResult public func stopProcessingJob(_ input: StopProcessingJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Stops a processing job.

stopTrainingJob(_:logger:on:)

@discardableResult public func stopTrainingJob(_ input: StopTrainingJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Stops a training job. To stop a job, Amazon SageMaker sends the algorithm the SIGTERM signal, which delays job termination for 120 seconds. Algorithms might use this 120-second window to save the model artifacts, so the results of the training is not lost.

When it receives a StopTrainingJob request, Amazon SageMaker changes the status of the job to Stopping. After Amazon SageMaker stops the job, it sets the status to Stopped.

stopTransformJob(_:logger:on:)

@discardableResult public func stopTransformJob(_ input: StopTransformJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<Void>

Stops a transform job.

When Amazon SageMaker receives a StopTransformJob request, the status of the job changes to Stopping. After Amazon SageMaker stops the job, the status is set to Stopped. When you stop a transform job before it is completed, Amazon SageMaker doesn't store the job's output in Amazon S3.

updateAction(_:logger:on:)

public func updateAction(_ input: UpdateActionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateActionResponse>

Updates an action.

updateAppImageConfig(_:logger:on:)

public func updateAppImageConfig(_ input: UpdateAppImageConfigRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateAppImageConfigResponse>

Updates the properties of an AppImageConfig.

updateArtifact(_:logger:on:)

public func updateArtifact(_ input: UpdateArtifactRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateArtifactResponse>

Updates an artifact.

updateCodeRepository(_:logger:on:)

public func updateCodeRepository(_ input: UpdateCodeRepositoryInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateCodeRepositoryOutput>

Updates the specified Git repository with the specified values.

updateContext(_:logger:on:)

public func updateContext(_ input: UpdateContextRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateContextResponse>

Updates a context.

updateDomain(_:logger:on:)

public func updateDomain(_ input: UpdateDomainRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateDomainResponse>

Updates the default settings for new user profiles in the domain.

updateEndpoint(_:logger:on:)

public func updateEndpoint(_ input: UpdateEndpointInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateEndpointOutput>

Deploys the new EndpointConfig specified in the request, switches to using newly created endpoint, and then deletes resources provisioned for the endpoint using the previous EndpointConfig (there is no availability loss).

When Amazon SageMaker receives the request, it sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API.

You must not delete an EndpointConfig in use by an endpoint that is live or while the UpdateEndpoint or CreateEndpoint operations are being performed on the endpoint. To update an endpoint, you must create a new EndpointConfig.

If you delete the EndpointConfig of an endpoint that is active or being created or updated you may lose visibility into the instance type the endpoint is using. The endpoint must be deleted in order to stop incurring charges.

updateEndpointWeightsAndCapacities(_:logger:on:)

public func updateEndpointWeightsAndCapacities(_ input: UpdateEndpointWeightsAndCapacitiesInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateEndpointWeightsAndCapacitiesOutput>

Updates variant weight of one or more variants associated with an existing endpoint, or capacity of one variant associated with an existing endpoint. When it receives the request, Amazon SageMaker sets the endpoint status to Updating. After updating the endpoint, it sets the status to InService. To check the status of an endpoint, use the DescribeEndpoint API.

updateExperiment(_:logger:on:)

public func updateExperiment(_ input: UpdateExperimentRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateExperimentResponse>

Adds, updates, or removes the description of an experiment. Updates the display name of an experiment.

updateImage(_:logger:on:)

public func updateImage(_ input: UpdateImageRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateImageResponse>

Updates the properties of a SageMaker image. To change the image's tags, use the AddTags and DeleteTags APIs.

updateModelPackage(_:logger:on:)

public func updateModelPackage(_ input: UpdateModelPackageInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateModelPackageOutput>

Updates a versioned model.

updateMonitoringSchedule(_:logger:on:)

public func updateMonitoringSchedule(_ input: UpdateMonitoringScheduleRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateMonitoringScheduleResponse>

Updates a previously created schedule.

updateNotebookInstance(_:logger:on:)

public func updateNotebookInstance(_ input: UpdateNotebookInstanceInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateNotebookInstanceOutput>

Updates a notebook instance. NotebookInstance updates include upgrading or downgrading the ML compute instance used for your notebook instance to accommodate changes in your workload requirements.

updateNotebookInstanceLifecycleConfig(_:logger:on:)

public func updateNotebookInstanceLifecycleConfig(_ input: UpdateNotebookInstanceLifecycleConfigInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateNotebookInstanceLifecycleConfigOutput>

Updates a notebook instance lifecycle configuration created with the CreateNotebookInstanceLifecycleConfig API.

updatePipeline(_:logger:on:)

public func updatePipeline(_ input: UpdatePipelineRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdatePipelineResponse>

Updates a pipeline.

updatePipelineExecution(_:logger:on:)

public func updatePipelineExecution(_ input: UpdatePipelineExecutionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdatePipelineExecutionResponse>

Updates a pipeline execution.

updateTrial(_:logger:on:)

public func updateTrial(_ input: UpdateTrialRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateTrialResponse>

Updates the display name of a trial.

updateTrialComponent(_:logger:on:)

public func updateTrialComponent(_ input: UpdateTrialComponentRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateTrialComponentResponse>

Updates one or more properties of a trial component.

updateUserProfile(_:logger:on:)

public func updateUserProfile(_ input: UpdateUserProfileRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateUserProfileResponse>

Updates a user profile.

updateWorkforce(_:logger:on:)

public func updateWorkforce(_ input: UpdateWorkforceRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateWorkforceResponse>

Use this operation to update your workforce. You can use this operation to require that workers use specific IP addresses to work on tasks and to update your OpenID Connect (OIDC) Identity Provider (IdP) workforce configuration.

Use SourceIpConfig to restrict worker access to tasks to a specific range of IP addresses. You specify allowed IP addresses by creating a list of up to ten CIDRs. By default, a workforce isn't restricted to specific IP addresses. If you specify a range of IP addresses, workers who attempt to access tasks using any IP address outside the specified range are denied and get a Not Found error message on the worker portal.

Use OidcConfig to update the configuration of a workforce created using your own OIDC IdP.

You can only update your OIDC IdP configuration when there are no work teams associated with your workforce. You can delete work teams using the operation.

After restricting access to a range of IP addresses or updating your OIDC IdP configuration with this operation, you can view details about your update workforce using the operation.

This operation only applies to private workforces.

updateWorkteam(_:logger:on:)

public func updateWorkteam(_ input: UpdateWorkteamRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil) -> EventLoopFuture<UpdateWorkteamResponse>

Updates an existing work team with new member definitions or description.

listActionsPaginator(_:_:logger:on:onPage:)

public func listActionsPaginator<Result>(_ input: ListActionsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListActionsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists the actions in your account and their properties.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listActionsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listActionsPaginator(_ input: ListActionsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListActionsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listAlgorithmsPaginator(_:_:logger:on:onPage:)

public func listAlgorithmsPaginator<Result>(_ input: ListAlgorithmsInput, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListAlgorithmsOutput, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists the machine learning algorithms that have been created.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listAlgorithmsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listAlgorithmsPaginator(_ input: ListAlgorithmsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListAlgorithmsOutput, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listAppImageConfigsPaginator(_:_:logger:on:onPage:)

public func listAppImageConfigsPaginator<Result>(_ input: ListAppImageConfigsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListAppImageConfigsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists the AppImageConfigs in your account and their properties. The list can be filtered by creation time or modified time, and whether the AppImageConfig name contains a specified string.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listAppImageConfigsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listAppImageConfigsPaginator(_ input: ListAppImageConfigsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListAppImageConfigsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listAppsPaginator(_:_:logger:on:onPage:)

public func listAppsPaginator<Result>(_ input: ListAppsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListAppsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists apps.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listAppsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listAppsPaginator(_ input: ListAppsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListAppsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listArtifactsPaginator(_:_:logger:on:onPage:)

public func listArtifactsPaginator<Result>(_ input: ListArtifactsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListArtifactsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists the artifacts in your account and their properties.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listArtifactsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listArtifactsPaginator(_ input: ListArtifactsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListArtifactsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listAssociationsPaginator(_:_:logger:on:onPage:)

public func listAssociationsPaginator<Result>(_ input: ListAssociationsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListAssociationsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists the associations in your account and their properties.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listAssociationsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listAssociationsPaginator(_ input: ListAssociationsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListAssociationsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listAutoMLJobsPaginator(_:_:logger:on:onPage:)

public func listAutoMLJobsPaginator<Result>(_ input: ListAutoMLJobsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListAutoMLJobsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Request a list of jobs.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listAutoMLJobsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listAutoMLJobsPaginator(_ input: ListAutoMLJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListAutoMLJobsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listCandidatesForAutoMLJobPaginator(_:_:logger:on:onPage:)

public func listCandidatesForAutoMLJobPaginator<Result>(_ input: ListCandidatesForAutoMLJobRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListCandidatesForAutoMLJobResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

List the Candidates created for the job.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listCandidatesForAutoMLJobPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listCandidatesForAutoMLJobPaginator(_ input: ListCandidatesForAutoMLJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListCandidatesForAutoMLJobResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listCodeRepositoriesPaginator(_:_:logger:on:onPage:)

public func listCodeRepositoriesPaginator<Result>(_ input: ListCodeRepositoriesInput, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListCodeRepositoriesOutput, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of the Git repositories in your account.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listCodeRepositoriesPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listCodeRepositoriesPaginator(_ input: ListCodeRepositoriesInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListCodeRepositoriesOutput, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listCompilationJobsPaginator(_:_:logger:on:onPage:)

public func listCompilationJobsPaginator<Result>(_ input: ListCompilationJobsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListCompilationJobsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists model compilation jobs that satisfy various filters.

To create a model compilation job, use CreateCompilationJob. To get information about a particular model compilation job you have created, use DescribeCompilationJob.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listCompilationJobsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listCompilationJobsPaginator(_ input: ListCompilationJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListCompilationJobsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listContextsPaginator(_:_:logger:on:onPage:)

public func listContextsPaginator<Result>(_ input: ListContextsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListContextsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists the contexts in your account and their properties.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listContextsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listContextsPaginator(_ input: ListContextsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListContextsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listDomainsPaginator(_:_:logger:on:onPage:)

public func listDomainsPaginator<Result>(_ input: ListDomainsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListDomainsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists the domains.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listDomainsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listDomainsPaginator(_ input: ListDomainsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListDomainsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listEndpointConfigsPaginator(_:_:logger:on:onPage:)

public func listEndpointConfigsPaginator<Result>(_ input: ListEndpointConfigsInput, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListEndpointConfigsOutput, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists endpoint configurations.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listEndpointConfigsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listEndpointConfigsPaginator(_ input: ListEndpointConfigsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListEndpointConfigsOutput, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listEndpointsPaginator(_:_:logger:on:onPage:)

public func listEndpointsPaginator<Result>(_ input: ListEndpointsInput, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListEndpointsOutput, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists endpoints.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listEndpointsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listEndpointsPaginator(_ input: ListEndpointsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListEndpointsOutput, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listExperimentsPaginator(_:_:logger:on:onPage:)

public func listExperimentsPaginator<Result>(_ input: ListExperimentsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListExperimentsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists all the experiments in your account. The list can be filtered to show only experiments that were created in a specific time range. The list can be sorted by experiment name or creation time.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listExperimentsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listExperimentsPaginator(_ input: ListExperimentsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListExperimentsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listFeatureGroupsPaginator(_:_:logger:on:onPage:)

public func listFeatureGroupsPaginator<Result>(_ input: ListFeatureGroupsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListFeatureGroupsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

List FeatureGroups based on given filter and order.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listFeatureGroupsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listFeatureGroupsPaginator(_ input: ListFeatureGroupsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListFeatureGroupsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listFlowDefinitionsPaginator(_:_:logger:on:onPage:)

public func listFlowDefinitionsPaginator<Result>(_ input: ListFlowDefinitionsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListFlowDefinitionsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Returns information about the flow definitions in your account.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listFlowDefinitionsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listFlowDefinitionsPaginator(_ input: ListFlowDefinitionsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListFlowDefinitionsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listHumanTaskUisPaginator(_:_:logger:on:onPage:)

public func listHumanTaskUisPaginator<Result>(_ input: ListHumanTaskUisRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListHumanTaskUisResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Returns information about the human task user interfaces in your account.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listHumanTaskUisPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listHumanTaskUisPaginator(_ input: ListHumanTaskUisRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListHumanTaskUisResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listHyperParameterTuningJobsPaginator(_:_:logger:on:onPage:)

public func listHyperParameterTuningJobsPaginator<Result>(_ input: ListHyperParameterTuningJobsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListHyperParameterTuningJobsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of HyperParameterTuningJobSummary objects that describe the hyperparameter tuning jobs launched in your account.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listHyperParameterTuningJobsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listHyperParameterTuningJobsPaginator(_ input: ListHyperParameterTuningJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListHyperParameterTuningJobsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listImageVersionsPaginator(_:_:logger:on:onPage:)

public func listImageVersionsPaginator<Result>(_ input: ListImageVersionsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListImageVersionsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists the versions of a specified image and their properties. The list can be filtered by creation time or modified time.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listImageVersionsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listImageVersionsPaginator(_ input: ListImageVersionsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListImageVersionsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listImagesPaginator(_:_:logger:on:onPage:)

public func listImagesPaginator<Result>(_ input: ListImagesRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListImagesResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists the images in your account and their properties. The list can be filtered by creation time or modified time, and whether the image name contains a specified string.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listImagesPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listImagesPaginator(_ input: ListImagesRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListImagesResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listLabelingJobsPaginator(_:_:logger:on:onPage:)

public func listLabelingJobsPaginator<Result>(_ input: ListLabelingJobsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListLabelingJobsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of labeling jobs.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listLabelingJobsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listLabelingJobsPaginator(_ input: ListLabelingJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListLabelingJobsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listLabelingJobsForWorkteamPaginator(_:_:logger:on:onPage:)

public func listLabelingJobsForWorkteamPaginator<Result>(_ input: ListLabelingJobsForWorkteamRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListLabelingJobsForWorkteamResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of labeling jobs assigned to a specified work team.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listLabelingJobsForWorkteamPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listLabelingJobsForWorkteamPaginator(_ input: ListLabelingJobsForWorkteamRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListLabelingJobsForWorkteamResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listModelPackageGroupsPaginator(_:_:logger:on:onPage:)

public func listModelPackageGroupsPaginator<Result>(_ input: ListModelPackageGroupsInput, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListModelPackageGroupsOutput, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of the model groups in your AWS account.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listModelPackageGroupsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listModelPackageGroupsPaginator(_ input: ListModelPackageGroupsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListModelPackageGroupsOutput, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listModelPackagesPaginator(_:_:logger:on:onPage:)

public func listModelPackagesPaginator<Result>(_ input: ListModelPackagesInput, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListModelPackagesOutput, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists the model packages that have been created.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listModelPackagesPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listModelPackagesPaginator(_ input: ListModelPackagesInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListModelPackagesOutput, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listModelsPaginator(_:_:logger:on:onPage:)

public func listModelsPaginator<Result>(_ input: ListModelsInput, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListModelsOutput, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists models created with the CreateModel API.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listModelsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listModelsPaginator(_ input: ListModelsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListModelsOutput, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listMonitoringExecutionsPaginator(_:_:logger:on:onPage:)

public func listMonitoringExecutionsPaginator<Result>(_ input: ListMonitoringExecutionsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListMonitoringExecutionsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Returns list of all monitoring job executions.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listMonitoringExecutionsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listMonitoringExecutionsPaginator(_ input: ListMonitoringExecutionsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListMonitoringExecutionsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listMonitoringSchedulesPaginator(_:_:logger:on:onPage:)

public func listMonitoringSchedulesPaginator<Result>(_ input: ListMonitoringSchedulesRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListMonitoringSchedulesResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Returns list of all monitoring schedules.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listMonitoringSchedulesPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listMonitoringSchedulesPaginator(_ input: ListMonitoringSchedulesRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListMonitoringSchedulesResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listNotebookInstanceLifecycleConfigsPaginator(_:_:logger:on:onPage:)

public func listNotebookInstanceLifecycleConfigsPaginator<Result>(_ input: ListNotebookInstanceLifecycleConfigsInput, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListNotebookInstanceLifecycleConfigsOutput, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists notebook instance lifestyle configurations created with the CreateNotebookInstanceLifecycleConfig API.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listNotebookInstanceLifecycleConfigsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listNotebookInstanceLifecycleConfigsPaginator(_ input: ListNotebookInstanceLifecycleConfigsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListNotebookInstanceLifecycleConfigsOutput, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listNotebookInstancesPaginator(_:_:logger:on:onPage:)

public func listNotebookInstancesPaginator<Result>(_ input: ListNotebookInstancesInput, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListNotebookInstancesOutput, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Returns a list of the Amazon SageMaker notebook instances in the requester's account in an AWS Region.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listNotebookInstancesPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listNotebookInstancesPaginator(_ input: ListNotebookInstancesInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListNotebookInstancesOutput, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listPipelineExecutionStepsPaginator(_:_:logger:on:onPage:)

public func listPipelineExecutionStepsPaginator<Result>(_ input: ListPipelineExecutionStepsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListPipelineExecutionStepsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of PipeLineExecutionStep objects.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listPipelineExecutionStepsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listPipelineExecutionStepsPaginator(_ input: ListPipelineExecutionStepsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListPipelineExecutionStepsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listPipelineExecutionsPaginator(_:_:logger:on:onPage:)

public func listPipelineExecutionsPaginator<Result>(_ input: ListPipelineExecutionsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListPipelineExecutionsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of the pipeline executions.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listPipelineExecutionsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listPipelineExecutionsPaginator(_ input: ListPipelineExecutionsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListPipelineExecutionsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listPipelineParametersForExecutionPaginator(_:_:logger:on:onPage:)

public func listPipelineParametersForExecutionPaginator<Result>(_ input: ListPipelineParametersForExecutionRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListPipelineParametersForExecutionResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of parameters for a pipeline execution.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listPipelineParametersForExecutionPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listPipelineParametersForExecutionPaginator(_ input: ListPipelineParametersForExecutionRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListPipelineParametersForExecutionResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listPipelinesPaginator(_:_:logger:on:onPage:)

public func listPipelinesPaginator<Result>(_ input: ListPipelinesRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListPipelinesResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of pipelines.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listPipelinesPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listPipelinesPaginator(_ input: ListPipelinesRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListPipelinesResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listProcessingJobsPaginator(_:_:logger:on:onPage:)

public func listProcessingJobsPaginator<Result>(_ input: ListProcessingJobsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListProcessingJobsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists processing jobs that satisfy various filters.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listProcessingJobsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listProcessingJobsPaginator(_ input: ListProcessingJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListProcessingJobsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listProjectsPaginator(_:_:logger:on:onPage:)

public func listProjectsPaginator<Result>(_ input: ListProjectsInput, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListProjectsOutput, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of the projects in an AWS account.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listProjectsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listProjectsPaginator(_ input: ListProjectsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListProjectsOutput, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listSubscribedWorkteamsPaginator(_:_:logger:on:onPage:)

public func listSubscribedWorkteamsPaginator<Result>(_ input: ListSubscribedWorkteamsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListSubscribedWorkteamsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of the work teams that you are subscribed to in the AWS Marketplace. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listSubscribedWorkteamsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listSubscribedWorkteamsPaginator(_ input: ListSubscribedWorkteamsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListSubscribedWorkteamsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listTagsPaginator(_:_:logger:on:onPage:)

public func listTagsPaginator<Result>(_ input: ListTagsInput, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListTagsOutput, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Returns the tags for the specified Amazon SageMaker resource.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listTagsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listTagsPaginator(_ input: ListTagsInput, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListTagsOutput, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listTrainingJobsPaginator(_:_:logger:on:onPage:)

public func listTrainingJobsPaginator<Result>(_ input: ListTrainingJobsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListTrainingJobsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists training jobs.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listTrainingJobsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listTrainingJobsPaginator(_ input: ListTrainingJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListTrainingJobsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listTrainingJobsForHyperParameterTuningJobPaginator(_:_:logger:on:onPage:)

public func listTrainingJobsForHyperParameterTuningJobPaginator<Result>(_ input: ListTrainingJobsForHyperParameterTuningJobRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListTrainingJobsForHyperParameterTuningJobResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of TrainingJobSummary objects that describe the training jobs that a hyperparameter tuning job launched.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listTrainingJobsForHyperParameterTuningJobPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listTrainingJobsForHyperParameterTuningJobPaginator(_ input: ListTrainingJobsForHyperParameterTuningJobRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListTrainingJobsForHyperParameterTuningJobResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listTransformJobsPaginator(_:_:logger:on:onPage:)

public func listTransformJobsPaginator<Result>(_ input: ListTransformJobsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListTransformJobsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists transform jobs.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listTransformJobsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listTransformJobsPaginator(_ input: ListTransformJobsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListTransformJobsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listTrialComponentsPaginator(_:_:logger:on:onPage:)

public func listTrialComponentsPaginator<Result>(_ input: ListTrialComponentsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListTrialComponentsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists the trial components in your account. You can sort the list by trial component name or creation time. You can filter the list to show only components that were created in a specific time range. You can also filter on one of the following:

  • ExperimentName

  • SourceArn

  • TrialName

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listTrialComponentsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listTrialComponentsPaginator(_ input: ListTrialComponentsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListTrialComponentsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listTrialsPaginator(_:_:logger:on:onPage:)

public func listTrialsPaginator<Result>(_ input: ListTrialsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListTrialsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists the trials in your account. Specify an experiment name to limit the list to the trials that are part of that experiment. Specify a trial component name to limit the list to the trials that associated with that trial component. The list can be filtered to show only trials that were created in a specific time range. The list can be sorted by trial name or creation time.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listTrialsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listTrialsPaginator(_ input: ListTrialsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListTrialsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listUserProfilesPaginator(_:_:logger:on:onPage:)

public func listUserProfilesPaginator<Result>(_ input: ListUserProfilesRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListUserProfilesResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Lists user profiles.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listUserProfilesPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listUserProfilesPaginator(_ input: ListUserProfilesRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListUserProfilesResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listWorkforcesPaginator(_:_:logger:on:onPage:)

public func listWorkforcesPaginator<Result>(_ input: ListWorkforcesRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListWorkforcesResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Use this operation to list all private and vendor workforces in an AWS Region. Note that you can only have one private workforce per AWS Region.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listWorkforcesPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listWorkforcesPaginator(_ input: ListWorkforcesRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListWorkforcesResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

listWorkteamsPaginator(_:_:logger:on:onPage:)

public func listWorkteamsPaginator<Result>(_ input: ListWorkteamsRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, ListWorkteamsResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Gets a list of private work teams that you have defined in a region. The list may be empty if no work team satisfies the filter specified in the NameContains parameter.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

listWorkteamsPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func listWorkteamsPaginator(_ input: ListWorkteamsRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (ListWorkteamsResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.

searchPaginator(_:_:logger:on:onPage:)

public func searchPaginator<Result>(_ input: SearchRequest, _ initialValue: Result, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (Result, SearchResponse, EventLoop) -> EventLoopFuture<(Bool, Result)>) -> EventLoopFuture<Result>

Finds Amazon SageMaker resources that match a search query. Matching resources are returned as a list of SearchRecord objects in the response. You can sort the search results by any resource property in a ascending or descending order.

You can query against the following value types: numeric, text, Boolean, and timestamp.

Provide paginated results to closure onPage for it to combine them into one result. This works in a similar manner to Array.reduce<Result>(_:_:) -> Result.

Parameters:

  • input: Input for request
  • initialValue: The value to use as the initial accumulating value. initialValue is passed to onPage the first time it is called.
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each paginated response. It combines an accumulating result with the contents of response. This combined result is then returned along with a boolean indicating if the paginate operation should continue.

searchPaginator(_:logger:on:onPage:)

Provide paginated results to closure onPage.

public func searchPaginator(_ input: SearchRequest, logger: Logger = AWSClient.loggingDisabled, on eventLoop: EventLoop? = nil, onPage: @escaping (SearchResponse, EventLoop) -> EventLoopFuture<Bool>) -> EventLoopFuture<Void>

Parameters

  • input: Input for request
  • logger: Logger used flot logging
  • eventLoop: EventLoop to run this process on
  • onPage: closure called with each block of entries. Returns boolean indicating whether we should continue.